Custom Search

Saturday, 21 January 2012

MG EC S4 Syllabus


EN010401     ENGINEERING  MATHEMATICS  III

(Common  to  all branches)
Teaching  scheme                                                                             Credits:  4

2  hours  lecture and  2  hour tutorial per  week


Objectives: Apply  standard  methods  of  mathematical  &statistical  analysis



MODULE  1     Fourier  series                                                    ( 12  hours)

Dirichlet   conditions –  Fourier  series  with  period  2  π and  2l – Half range  sine and  cosine series 

Harmonic  Analysis    r.m.s  Value

MODULE  2     Fourier  Transform                                             ( 12  hours)

Statement of Fourier integral theorem – Fourier transforms – derivative of transforms- convolution theorem (no proof) – Parsevals identity

MODULE  3       Partial differential equations                             ( 12  hours)

Formation by eliminating arbitrary constants and arbitrary functions – solution of Lagrange’s equation – Charpits method –solution of Homogeneous partical differential equations with constant coefficients

MODULE  4       Probability  distribution                                        ( 12  hours)

Concept of random variable , probability distribution – Bernoulli’s trial – Discrete distribution – Binomial distribution – its mean and variance- fitting of Binominal distribution – Poisson distribution as a limiting case of Binominal distribution – its mean and variance – fitting of Poisson distribution – continuous distribution- Uniform distribution – exponential distribution – its mean and variance – Normal distribution – Standard normal curve- its properties

MODULE  5       Testing  of hypothesis                                        ( 12  hours)

Populations and Samples – Hypothesis – level of significance – type I and type II error – Large samples tests – test of significance for single proportion, difference of proportion, single mean, difference of mean – chi –square test for variance- F test for equality of variances for small samples

References

1.       Bali& Iyengar    A  text books  of Engg. Mathematics    Laxmi Publications  Ltd.

2.       M.K. Venkataraman – Engg. Mathematics vol II 3rd year part A & B – National Publishing Co.

3.       I.N. Sneddon –  Elements of  partial differential equations    Mc  Graw  Hill

4.       B.V. Ramana    Higher  Engg. Mathematics    Mc Graw  Hill

5.       Richard  A  Johnson –  Miller  Fread’s probability  & Statistics  for  Engineers- Pearson/ PHI




6.       T.  Veerarajan    Engg. Mathematics    Mc Graw  Hill

7.       G. Haribaskaran    Probability, Queueing  theory  and  reliability  Engg.    Laxmi Publications

8.       V. Sundarapandian  -  probability  ,Statistics and  Queueing  theory  – PHI

9.       H.C.Taneja    Advanced  Engg. Mathematics  Vol II    I.K.International

10.    A.K.Mukhopadhyay-Mathematical   Methods  For  Engineers and  Physicists-I.K.International

Mahatma  Gandhi  University


EN010  402(ME):  PRINCIPLES  OF  MANAGEMENT

(Common  with  EN010  502(ME))
Teaching  scheme                                                                                               Credits:  4

3  hours  lecture  and  1  hour  tutorial  per  week

Objectives
        To  develop  an  understanding  of  different  functional  areas  of  management.

        To understand the functions and duties an individual should perform in an organisation.

Module  I  (12  hours)

Management Concepts: Vision, Mission, Goals and Objectives of management-MBO-Scientific management- Functions of management- Planning- Organizing- Staffing-Directing- Motivating- Communicating- Coordinating- Controlling- Authority and Responsibility- Delegation- Span of control- Organizational structure- Line, Line and staff and Functional relationship.

Module  II  (12  hours)

Personnel Management: Definition and concept- Objectives of personnel management-Manpower planning- Recruitment and Selection of manpower- Training and development of manpower- Labour welfare- Labour turnover- Quality circle- Industrial fatigue- Industrial disputes-Method of settling disputes- Trade unions.

Module  III  (12  hours)

Production management: Objectives and scope of production management- Functions of production department- production management frame work- product life cycle-Types of production- Production procedure- Project planning with CPM and PERT- Basic concepts in network.

Module  IV  (12  hours)

Financial Management: Objectives and Functions of Financial Management- Types of Capital- Factors affecting working capital- Methods of financing.
Cost  Management:  Elements  of  cost-  Components  of  cost-  Selling  Price  of  a  product.

Module  V  (12  hours)

Sales and Marketing Management: Sales management- Concept- Functions of sales department- Duties of sales engineer- Selling concept and Marketing concept- Marketing-Definition and principles of marketing- Marketing management and its functions- Sales forecasting- Pricing- Advertising- Sales promotion- Channels of distribution- Market research.
Text  Books

1.       Koontz  and  Weihrich,  Essentials  of  Management,  Tata  McGraw  Hill.

2.        Mahajan  M.,  Industrial  Engineering  and  Production  Management,  Dhanpat  Rai  and  Co.

3.        Kemthose  and  Deepak,  Industrial  Engineering  an    Management,  Prentice  Hall  of  India.

Reference  Books

1.       Martand  Telsang,  Industrial  Engineering  and  Production  Management.

2.       Khanna  O.P.,  Industrial  Engineering  and  Management,  Dhanpat  Rai  and  Co.

3.       Philip  Kotler,  Marketing  Management,  Prentice  Hall  of  India.

4.        Sharma   S.   C.   &   Banga   T.   R.,   Industrial    Organisation    and    Engineering    Economics,
Khanna  Publishers.

5.       Prasanna  Chandra,  Financial  Management,  Tata  McGraw  Hill.


Syllabus  -  B.Tech.  Mechanical  Engineering



EC010  403  SIGNALS  AND  SYSTEMS

Teaching  scheme                                                                                                Credits:  4

2  hours lecture and  2  hours tutorial  per week

Objectives

    To  study  the  methods  of  analysis  of  continuous  time  and  discrete  time  signals  and  systems   to

serve  as  a  foundation  for  further  study  on  communication,  signal  processing  and  control

Module  I  (12  hrs)


Classification  of  signals:  Continuous  time  and  Discrete  time,      Even  and  Odd  ,      Periodic  and  Non-

periodic , Energy and Power – Basic operations on signals: Operations performed on the dependent variable , operations on the independent variable: Shifting , Scaling – Elementary Discrete time and Continuous time signals: Exponential , Sinusoidal , Step , Impulse , Ramp – Systems: Properties of Systems: Stability, Memory, Causality, Invertibility, Time invariance, Linearity – LTI Systems: Representation of Signals in terms of impulses – Impulse response – Convolution sum and Convolution integral – Cascade and Parallel interconnections – Memory, Invertibility, Causality and Stability of LTI systems – Step response of LTI systems – Systems described by differential and difference equations (solution by conventional methods not required)

Module  II  (12  hrs)


Fourier analysis for continuous time signals and systems: Representation of periodic signals: Continuous Time Fourier Series – convergence of Fourier series – Gibbs phenomenon – Representation of aperiodic signals: Continuous Time Fourier Transform – The Fourier Transform for periodic signals – Properties of Fourier representations – Frequency Response of systems characterized by linear constant coefficient differential equations

Module  III  (12  hrs)


Fourier analysis for discrete time signals and systems: : Representation of periodic signals: Discrete Time Fourier Series – Representation of aperiodic signals: Discrete Time Fourier Transform – The Fourier Transform for periodic signals – Properties of Fourier representations – Frequency Response of systems characterized by linear constant coefficient difference equations

Module  IV  (12  hrs)


Filtering: Frequency domain characteristics of ideal filters – Time domain characteristics of ideal LPF – Non-ideal filters – First and Second order filters described by differential and difference equations – Approximating functions: Butterworth, Chebyshev and elliptic filters (Magnitude response only) – Sampling: The sampling theorem – Reconstruction of a signal from its samples using interpolation – Aliasing



Module  V  (12  hrs)


Bilateral Laplace Transform – ROC – Inverse – Geometric evaluation of the Fourier transform from pole-zero plot – Analysis and characterization of LTI systems using Laplace Transform – The Z Transform – ROC – Inverse – Geometric evaluation of the Fourier Transform from pole-zero plot – Properties of Z transform - Analysis and characterization of LTI systems using Z-Transform

References:

1)      A V Oppenheim, A S Willsky and S H Nawab, Signals and Systems, Prentice Hall of India.

2)      S  Haykin,   and  B  V  Veen,  Signals  and  Systems,  Wiley
3)      B  P  Lathi,  Signal  Processing  and  Linear  Systems,  OUP

4)      E W Kamen, and B Heck, Fundamentals of Signals and Systems using the web and Matlab, Pearson

5)      Luis F  Chaparro  ,     Signals  and  Systems  Using  MATLAB,  Elsevier
6)      R  E  Ziemer,   and  W  H  Tranter,  Signals  and  Systems,  Pearson.
7)      R  A Gabel  and  R  A Roberts,  Signals  and  Linear  Systems,  Wiley

Mahatma Gandhi University


EC010  404:  DIGITAL  ELECTRONICS
Teaching  scheme                                                                                              Credits:  4
3hours  lecture  and  1  hour  tutorial  per  week.

Objectives

  To Work with a variety of number systems and numeric representations, including signed and unsigned binary, hexadecimal, 2’s complement.

  To introduce basic postulates of Boolean algebra and show the correlation between Boolean expression.
  To  introduce  the  methods  for  simplifying  Boolean  expressions.

  To outline the formal procedures for the analysis and design of combinational circuits and sequential circuits.

Module  I  (12hours)

Positional Number System: Binary, Octal, Decimal, Hexadecimal number system, Number base conversions, complements - signed magnitude binary numbers - Binary Arithmetic- addition, subtraction - Binary codes- Weighted, BCD, 8421, Gray code, Excess 3 code, ASCII, Error detecting and correcting code, parity, hamming code.

Boolean postulates and laws with proof, De-Morgan’s Theorems, Principle of Duality, Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums (POS), Canonical forms, Karnaugh map Minimization, Don’t care conditions

Module  II  (12  hours)

Digital Circuits: Positive and Negative logic, Transistor transistor logic, TTL with totem pole, open collector and tri state output, Emitter coupled logic – basic ECL inverter, NMOS NOR gate, CMOS inverter, NAND and NOR, Gate performance parameters – fan in, fan out, propagation delay, noise margin, power dissipation for each logic, characteristics of TTL and CMOS, subfamilies of TTL and CMOS.

Module  III  (12  hours)

Introduction to Combinational Circuits: Basic logic gates, Universal gates, Realization of Boolean functions using universal gates, Realization of combinational functions: addition – half and full adder – n bit adder – carry look ahead adder, subtraction, comparison, code conversion, and decoder, encoder, multiplexer, demultiplexer, parity checkers, and parity generator.

Introduction to Sequential Circuits: latches, timing, Flip Flops, types, characteristic equations, excitation tables, Realization of one flip flop using other flip flops.

Module  IV  (12  hours)

Application of flip flops as bounce elimination switch, register, counter and RAM, Binary ripple counter, synchronous binary counter, Design of modulo ‘n’ synchronous counter, up/down counters,

Shift registers – SISO, SIPO, PISO, PIPO, bidirectional shift register and universal register, counters based on shift registers

Module  V  (12  hours)

Hazards in combinational circuits: Static hazard, dynamic hazard, essential hazards, hazard free combinational circuits.

Introduction to programmable logic devices: PLA- block diagram, PAL – block diagram, registered PAL, Configurable PAL, GAL - architecture, CPLD –




Syllabus -  B.Tech. Electronics & Communication  Engg.

Mahatma Gandhi University


classification internal architecture, FPGA - architecture, ASIC – categories , full custom and semi custom.


Reference  Books

1.      Donald  D Givone,  Digital  Principles  and  Design,  Tata McGraw Hill, 2003.
2.      G K Kharate,  Digital  Electronics,  Oxford  university  press,  2010
3.      Ronald  J Tocci,  Digital  Systems,  Pearson  Education, 10th  edition 2009.
4.       Thomas L Floyd,  Digital  Fundamentals,  Pearson  Education,  8th  edition, 2003.
5.       Donald P Leach, Albert Paul Malvino, Digital Principles and Applications, Tata McGraw Hill 6th edition, 2006.
6.      Charles H.Roth, Fundamentals of Logic Design, Thomson Publication Company 5th edition, 2004.

7.      Milos Ercegovac,  Introduction  to  Digital  Systems,  Wiley  India, 2010
8.      Moris mano,  Digital  Design,  Prentice Hall of India,  3rd  edition, 2002.
9.      Anada kumar,  Fundamentals  of  Digital  Circuits,  Prentice Hall of India,  2008.
10.  Brain  Holdesworth,  Digital  Logic  Design,  Elsevier,  4th  edition,  2002.

 

 


Syllabus -  B.Tech. Electronics & Communication  Engg.




EC010  405  ANALOG  COMMUNICATION

Teaching  scheme                                                                                             Credits:  4

3  hours  lecture  and  1  hour  tutorial  per  week

Objectives:

           Present  an  introduction  to  linear  and  non  linear  modulation  and  circuits.

            Familiarize  students  with  the  basics  of  probability  theory  and  noise  in  communication  system.

           Introduce  students  to  telephone  system


Module  1(12  hrs)

Introduction:     Block  diagram of  communication  system –need  for  modulation

Linear    Modulation:
Mathematical    representation    of    AM-    frequency    spectrum    -    Power
relations,  SSB,  VSB  and  ISB
(Basics  only)




Angle Modulation: FM and PM, Spectrum of FM signal, Power and Bandwidth of FM signals, Comparison of AM- FM- PM.

Module  2  (12  hrs)

Linear Modulators and Demodulators: Diode and Transistor Modulator, Square Law Detector Envelope Detector.

Generation and Detection of DSB-SC signal :-Balanced Modulator, Ring Modulator, Synchronous Detection.

SSB-SC  generation:-Filter  method,  Phase  shift  method,  Detection  of  SSB-  Product demodulator

Module  3  (12  hrs)

Non Linear modulators and Demodulators:-FM Generation: Direct and Indirect methods, FM Detection:-Simple slope, balanced slope detection, Foster –Seeley detection, Ratio Detection Radio Transmitters and Receivers:- AM transmitters:-High level and Low level, Receivers:-characteristics of receivers, Super heterodyne receiver, Image frequency rejection, choice of intermediate frequency, mixer, AGC .

FM  Stereo  Transmitter  and  Receiver.

Module  4   (12  hrs)

Probability and Random Variables: -Probability, Sample Space, Events, Conditional Probability and Statistical Independence, Bayes’ Theorem, Discrete And Continuous Random Variables, CDF and PDF Joint and Conditional PDF, Statistical Averages: Means, Moments, Expectation Probability models: Binomial Distribution, Gaussian Distribution, Rayleigh Distribution

Module  5     (12  hrs)

Noise:- Sources of noise, shot noise, resistor noise, white noise, additive noise, noise bandwidth, noise temperature, noise figure, signal to noise ratio, noise for cascaded stages




Telephone Systems - Telephone subscribers loop system, switching and transmission plan, Transmission system, Signalling techniques, Interchannel signalling, common channel signalling, standard telephone set, telephone call procedures, call progress.



References

1. LE Frenzel, Principles of Electronic Communication System 3rd Edition, Tata Mc.GrawHill.
2.      Kennedy,Davis   ,  Electronic  Communication  systems  4th     Edition  ,Tata  Mc.GrawHill.

3.      D  Roddy  and  J Coolen:  Electronic  Communications,  Prentice  Hall  of  India.

4.      RP  Singh  ,S D  Sapre  ,Communication  System,  Analog  &Digital,  Tata  Mc.Graw  Hill
5.      AB  Carlson,PB  Crilly,JC  Rutledge, Communication  Systems  4th   Edition,  Mc.GrawHill

6.      Wayne  Tomasi  ,Electronic  communication  Systems  5th   Edition, Pearson  Edn
7.      RJ Shoenbeck ,Electronic communication ,Modulation & Transmission. Prentice Hall of India.

8.      ThiagarajanViswanathan, Telecommunication Switching systems and Networks, Prentice Hall of India.

9.      Simon  Haykin  ,Communication  System,Wiley

EC010  406  :  ANALOG  CIRCUITS    II

Teaching  Scheme  :                                                                                             Credits  :  4

3  hours  lecture  and  1  hour  tutorial  per  week.

Objectives:

       To  understand  differential  amplifiers  using  BJT  and  MOSFET
       To  understand  operational  amplifier  and  its  applications.

Module  I  (12)

Differential Amplifiers - BJT differential pair, large signal and small signal analysis of differential amplifiers, Input resistance, voltage gain, CMRR, non ideal characteristics of differential amplifier. Frequency response of differential amplifiers. MOS differential amplifiers, Current sources, Active load, cascode load, current mirror circuits, Wilson current mirror circuits. Small signal equivalent circuits, multistage differential amplifiers.

Module  II  (12)

Simplified internal circuit of 741 op-amp. DC analysis, Gain and frequency response. MOS Operational Amplifiers, single stage- cascode and folded cascode, two stage op-amp, op-amp with output buffer, frequency compensation and slew rate in two stage Op-amps. Ideal op-amp parameters, Non ideal op-amp. Effect of finite open loop gain, bandwidth and slew rate on circuit performance.

Module  III  (12)

Opamp applications: Inverting and non-inverting amplifier, summing amplifier, integrator, differentiator, Differential amplifiers, Instrumentation amplifiers, V to I and I to V converters, Comparators, Schmitt Trigger, Square and triangular waveform generator, Oscillators – RC Phase-shift and Wein-Bridge, Multivibrators – Astable and Monostable, Precision rectifiers, Programmable gain Amplifier

Module  IV  (12)

Filters: Ist order Low pass, high pass and all pass filters - Bandpass and band elimination filters Biquadratic filters (single op-amp with finite gain non inverting Sallen-Key of Low pass, High pass, Band pass and Band elimination filters. Switched capacitor Resistor, switched capacitor Integrator, Ist order SC filter
Module  V  (12)

D/A converters: DAC characteristics- resolution, output input equations, weighted resistor, R-2R network. A/D converter: ADC characteristics, Types - Dual slope, Counter ramp, Successive approximation, flash ADC, oversampling and delta sigma ADC.

Waveform generators – grounded capacitor VCO and emitter coupled VCO. Basic PLL topology and principle, transient response of PLL, Linear model of PLL, Major building blocks of PLL – analog and digital phase detector, VCO, filter. Applications of PLL. Monolithic PLL - IC LM565 and CD4046 CMOS PLL. 555 Timer Astable Multi vibrator and Monostable Multi vibrator using 555.



References:


1. Sergio Franco: Design with Operational Amplifiers and Analog Integrated Circuits, 3/e,Tata Mc.Graw Hill.

2.  Behzad  Razavi :  Design  of  Analog  CMOS  IC,  Tata  Mc.Graw Hill,  2003.

3.  Gayakwad  :  Op-Amps  and  Linear  Integrated  Circuits  ,  4/e, Prentice  Hall  of India..

4.  David  A.Johns,  Ken  Martin:  Analog  Integrated  Circuit  Design,  Wiley  India,  2008

5.     Gray,  Hurst,  Lewis  and  Meyer  Analysis  and  Design  of  Analog  Integrated  Circuits,  Wiley

6.   Baker  R Jacob:  CMOS  Circuit  Design,  Layout  and  Simulation,  Prentice hall  of India.,2005

EC010  407  ANALOG  CIRCUITS-II  LAB

Teaching  Schemes

3  hours  practical  per  week.                                                                                       Credits:  2

Objectives
          To  provide  experience  on  design,  testing,  and  analysis  of  few  electronic  circuits.
          To  provide  experience  on  design  ,testing  and  analysis  of  op-amp  circuits  .

LIST  OF  EXPERIMENTS

1.     Differential  amplifiers  (using  BJT  and  MOSFETs)  -  Measurement  of  CMRR

2.     Cascade  amplifiers  -  Frequency  response.

3.     Cascode  amplifiers  (using  BJT  and  MOSFETs)  -  Frequency  response.

4.     Familiarization of Operational amplifiers- Inverting and Non inverting amplifiers, frequency response, Adder, Integrator, comparator and voltage level detector.

5.     Measurement  of  Op-Amp.  parameters.

6.     Difference  Amplifier  and  Instrumentation  amplifier.

7.     Astable,  Monostable  and  Schmitt  trigger  circuit  using  Op  -Amps.

8.     Triangular  and  square  wave  generators  using  Op-  Amplifier.

9.     Wien bridge oscillator using op-amplifier with amplitude stabilization and amplitude control, RC Phase shift Oscillator.

10. Study  of  555   and  Astable,  Monostable  multivibrator  using  555.

11. Active  second  order  filters  using  Op-Amp  (LPF,  HPF,  BPF  and  BSF)

12. . A/D converters- counter ramp and flash type. 13. D/A Converters- ladder circuit.





EC010  408  ANALOG  COMMUNICATION  LAB


Teaching  scheme

Credits:  2


3  hours  practical  per  week




Objectives




To    provide    experience    on    design,    testing,    and
analysis
of    few   electronic    circuits
used
for

communication  engineering.





To  understand  basic  transmission  concepts  and  to  develop
strong  concepts  in  fundamentals.

List  of  Experiments  Using  discrete  components  only:




1.
Amplitude  Modulator-Measurement  of  Modulation  index.



2.
Amplitude  Demodulator




3.
Study  of  PLL  and  VCO  ICs




4.
Frequency  Modulator  using  VCO




5.
Frequency  Demodulator




6.
DSB-SC  Modulator




7.
DSB-SC  Demodulator




8.
Tuned  Amplifier




9.
Mixer




10.  AGC




11.
Study  of  8038




12.
Spectral  Analysis  of  AM  and  FM  .




13.
Multiplexing  using  analog  multiplexer  ICs





Note:Any  other  relevant  experiments  related  to  EC  010  405

No comments:

Post a Comment

LinkWithin

Related Posts Plugin for WordPress, Blogger...