Custom Search

Tuesday, 24 January 2012

MG EC S5 Syllabus



EN010501A      ENGINEERING  MATHEMATICS     IV

(Common  to  all  branches  except  CS  &  IT)
Teaching  scheme                                                                             Credits:  4

2  hours  lecture and  2  hour tutorial  per  week

Objectives: Use basic numerical techniques to solve problems and provide scientific techniques to decision making problems.

MODULE  1      Function  of  Complex  variable   (12  hours)

Analytic functions – Derivation of C.R. equations in cartision co-ordinates – harmonic and orthogonal properties – construction of analytic function given real or imaginary parts – complex potential –
conformal  mapping  of
z2   ,

-    Bilinear  transformation    cross  ratio    invariant  property  (no  proof) 



simple problems





MODULE  2
Complex  integration
(12  hours)








Line integral – Cauchy’s integral theorem – Cauchy’s integral formula – Taylor’s series- Laurent’s series – Zeros and singularities – types of singularities – Residues – Residue theorem – evaluation of real integrals in unit circle – contour integral in semi circle when poles lie on imaginary axis.

MODULE  3     Numerical  solution  of  algebraic  and  transcendental equations   (10  hours)

Successive bisection method – Regula –falsi method – Newton –Raphson method - Secant method – solution of system of linear equation by Gauss – Seidel method

MODULE  4   Numerical  solution  of  Ordinary  differential equations      (  10  hours)

Taylor’s series method – Euler’s method – modified Euler’s method – Runge – Kutta method (IV order) - Milnes predictor – corrector method

MODULE  5      Linear  programming  problem                    (16  hours)

Definition of L.P.P., solution, optimal solution, degenerate solution – graphical solution –solution using simplex method (non degenerate case only) Big -M method – Duality in L.P.P. – Transportation problem –Balanced T.P. – initial solution using Vogel’s approximation method - modi method (non degenerate case only)


References

1.       B.V.  Ramana    Higher  Engg.  Mathematics –  Mc  Graw  Hill

2.       M.R.Spicgel , S.Lipschutz , John J. Schiller, D.Spellman – Complex variables, schanm’s outline series - Mc Graw Hill

3.       S.Bathul    text book  of Engg.Mathematics    Special  functions  and  complex  variables  –PHI

4.       B.S.  Grewal –  Numerical  methods  in  Engg.  and   science  -  Khanna Publishers

5.       Dr.M.K  Venkataraman-  Numerical  methods  in  science  and  Engg   -National publishing  co




6.       S.S  Sastry  -  Introductory  methods  of Numerical  Analysis   -PHI

7.      P.K.Gupta  and  D.S. Hira  – Operations  Research    S.Chand

8.      Panneer  Selvam–  Operations  Research    PHI

9.       H.C.Taneja –  Advanced  Engg.  Mathematics  Vol II    I.K.International


EC010   502  CONTROL  SYSTEMS

Teaching  Scheme

2  hours  lecture  and  2  hours  tutorial  per  week.                                                      Credit  :4

Objectives

        To develop the basic understanding of control system theory and its role in engineering design.

        To familiarize the inputs, outputs, and building blocks of a control system; to differentiate between open-loop and closed-loop control systems.

        To understand the utility of Laplace transforms and transfer functions for modeling complex interconnected systems.

        To understand the concept of poles and zeros of a transfer function and how they affect the physical behavior of a system.

        To understand the concept of Time Domain and Frequency Domain analysis and to determine the physical behavior of systems using these analysis.

        To understand state variable analysis of systems and the relationship with state variable representation and transfer functions.

Module  1  (14  hours)

Introduction to Control Systems – Basic building blocks of a Control System – Open-Loop and Closed-Loop Control Systems – Feedback and effects of feedback – Types of feedback Control Systems – LTI Systems.

Impulse Response and Transfer Functions of LTI Systems – Properties of Transfer Functions – SISO and MIMO Systems – Mathematical modeling of electrical and mechanical systems (simple systems only) – Analogy between mechanical and electrical systems.

Block Diagrams – Reduction of Block Diagrams – Signal Flow Graph – Mason’s Gain Formula – Conversion of Block Diagrams to Signal Flow Graphs.

Module  2  (14  hours)

Stability of Linear Control Systems – BIBO Stability and Asymptotic Stability – Relationship between characteristic equation roots and stability – Method of determining stability – Routh-Hurwitz Criterion.

Time-Domain Analysis of Control Systems – Transient Response and Steady-State Response – Typical test signals – Unit-Step response and Time-Domain specifications of first-order and prototype second-order systems – Steady-State Error – Static and Dynamic Error Constants.

Effects of adding poles and zeros to the Transfer Function – Dominant Poles and Insignificant Poles of Transfer Functions.

Module  3  (10  hours)

Root-Locus Technique – Basic properties of the Root Loci – Angle and Magnitude conditions – Rules for the construction of approximate Root Loci.

Control System Design by the Root-Locus Method – Preliminary design considerations – Lead Compensation – Lag Compensation – Lead-Lag Compensation – Parallel Compensation.

Module  4  (12  hours)

Frequency-Domain Analysis of Control Systems – Frequency-Domain specifications of prototype second order system – Effects of adding zeros and poles to the Forward-Path Transfer Function.


Nyquist Stability  Criterion: Fundamentals –  Relationship  between  the Root Loci and  the Nyquist Plot.

Relative Stability – Gain Margin and Phase Margin – Stability analysis with Bode Plot and Polar Plot – Introduction to Nichols Plot, Constant-M & Constant-N circles and Nichols Chart (no analysis required).

Module  5  (10  hours)

State-Variable Analysis of Control Systems – Vector-Matrix representation of State Equations – State-Transition Matrix – State-Transition Equation – Relationship between State Equations and Higher-Order differential equations – Relationship between State Equations and Transfer Functions - Characteristic Equation, Eigen values and Eigen vectors.

References

1.      B. C. Kuo, Automatic  Control  Systems,  7th  ed., PHI Learning  Pvt. Ltd., New Delhi, 2009.

2.      K. Ogata, Modern  Control  Engineering, 5th  ed., PHI Learning  Pvt. Ltd., New Delhi, 2010.

3.      R. C. Dorf, R. H. Bishop, Modern Control Systems, 11th ed., Pearson Education, New Delhi, 2008.

4.      N. S. Nise, Control  Systems  Engineering,  5th  ed., Wiley  India Pvt. Ltd., New Delhi, 2009.

5.      M. Gopal, Control Systems: Principles and Design, 3rd ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2008.

Mahatma Gandhi University


EC010  503  DIGITAL  SYSTEM  DESIGN
Teaching  scheme                                                                                              Credits:  4
3  hours  lecture  and  1  hour  tutorial  per  week.

Objectives

        To  design  and  implement  combinational  circuits  using  basic  programmable  blocks
        To  design  and  implement  synchronous  sequential  circuits
        To  study  the  fundamentals  of  Verilog  HDL
       Ability  to  simulate  and  debug  a  digital  system  described  in  Verilog  HDL

Module  I  (12hours)

Introduction to Verilog HDL: Design units, Data objects, Signal drivers, Delays , Data types, language elements, operators, user defined primitives, modeling-data flow, behavioral, structural, Verilog implementation of simple combinational circuits: adder, code converter, decoder, encoder, multiplexer, demultiplexer.

Module  II  (12  hours)

Combinational circuit implementation using Quine–McCluskey algorithm, Decoders, Multiplexers, ROM and PLA, Implementation of multi output gate implementations

Module  III  (12  hours)

Finite State Machines: State diagram, State table, State assignments, State graphs, Capabilities and limitations of FSM, Meta stability, Clock skew, Mealy and Moore machines, Modelling of clocked synchronous circuits as mealy and Moore machines: serial binary adder, Sequence detector, design examples.

Module  IV  (12  hours)

Digital System Design Hierarchy: State assignments, Reduction of state tables, Equivalent states, Determination of state equivalence using implication table, Algorithmic State Machine, ASM charts, Design example.

Module  V  (12  hours)

Verilog HDL implementation of binary multiplier, divider, barrel shifter, FSM, Linear feedback shift register, Simple test bench for combinational circuits.


Reference

1.        Michael D.Ciletti, Advanced  Digital  design  with  Verilog  HDL, Pearson Education, 2005.

2.       S. Brown & Z. Vranestic, Fundamentals of Digital Logic with Verilog HDL, Tata McGraw Hill, 2002.

3.       Samir Palitkar, Verilog HDL A Guide to Digital Design and Synthesis, Pearson, 2nd edition, 2003.

4.       Peter J Ashenden ,Digital Design, an embedded system approach using Verilog, Elsevier, 2008

5.       Frank Vahid, Digital  Design, Wiley  Publishers.

6.        T R Padmanabhan, Design  through  Verilog  HDL, IEEE press, Wiley Inter science, 2002.

7.       Donald D Givone, Digital  Principles  and  Design, Tata McGraw Hill, 2003.

8.       Wakerly  J F, Digital  Design  Principles  and  Practices, Prentice hall of India, 2008.

9.       Nazeih M Botros, HDL  programming  VHDL  and  Verilog, Dreamtech press, 2009

10.   David J. Comer, Digital Logic and State Machine Design, Oxford university press, 3rd edition, 1995.






Syllabus - B.Tech. Electronics & Communication Engg.






EC 010 504(EE) Electric Drives & Control

Teaching Schedule

2 hours Lecture and 2 hours tutorial /week                                                Credits -4

Objectives:

·         To understand the characteristics and operational features of important power electronic devices

·         Understanding the basic working principles of DC and AC machines

Module 1(10 Hours)

D.C.Machines – DC Generator- Types, Open Circuit Characteristics and Load characteristics of d.c. shunt generator – Losses and efficiency. D C motor – starter – torque equation – speed torque characteristics of shunt, series and compound motors – Losses – efficiency – Brake test – Swinburne’s test.

Module 2(12 Hours)

A.C Machines – Transformers: transformer on no-load and load operation – phasor diagram – equivalent circuit – regulation – losses and efficiency – o.c. and s.c. tests. Three phase induction motors: types –Principle of operation-slip- torque equation – torque-slip characteristics–starters – single phase induction motors – types – working. Alternator –types- principle- emf equation – regulation by emf and mmf methods. Synchronous motor – Principle of operation.

Module3(10 Hours)

Power semiconductor Devices – SCR-Constructional features- Characteristics- rating and specification- Triggering circuits-protection and cooling. Construction and characteristics of power diodes, TRIAC, BJT, MOSFET and IGBT. .

Module 4(14 Hours)

Phase controlled Rectifiers - Operation and analysis of Single phase and multi-phase-controlled rectifiers with R, RL and back EMF load- free wheeling effect. Chopper-classification- Step down- step up- two and four quadrant operations.

Inverters- Single phase and three phase bridge inverters- VSI and CSI- PWM Inverters. SMPS, UPS– principle of operation and block schematic only.

Module 5(14 Hours)

DC drives: Methods of Speed control of dc motors– single phase and three phase fully controlled bridge rectifier drives. Chopper fed drives: Single, Two and four quadrant chopper drives. Induction Motor drives: Stator voltage, stator frequency and V/f




Control, Static rotor resistance control. Synchronous motor drives: Open loop and self controlled modes.

Text Books:

1      J B Gupta, Electrical Machines , S K Kataria and Sons

2      Vedam Subramaniam ,Power Semiconductor Drives –, TMH

3      Rashid Muhammad, Power Electronics: Pearson Edn.

References

1.    Electrical & Electronic Technology:   Hughes, Pearson Education

2.    Harish C Ray Power Electronics:, Galgotia Pub

3.    P S Bimbhra ,Power Electronics: Khanna Publishers

4.    M.D Singh and K.B Khanchandani, Power Electronics –, TMH, 1998

5.    Wildi - Electrical Machines, Drives and Power systems 6/ePearson Education


Polarization    of

Inductance  of  two  wire
EC010  505
APPLIED  ELECTROMAGNETIC  THEORY
Teaching  Schemes
Credit:  4

3 hours lecture and 1 hour tutorial per week. OBJECTIVES
       To  analyze  fields  potentials  due  to  static  changes
       To  evaluate  static  magnetic  fields

       To  understand  how  materials  affect  electric  and  magnetic  fields
       To  understand  the  relation  between  the  fields  under  time  varying  situations
       To  understand  principles  of  propagation  of  uniform  plane  waves.

Module  I  (14hours)

Review of vector analysis: Cartesian, Cylindrical and Spherical co-ordinates systems- Coordinate transformations. Vector fields: Divergence and curl- Divergence theorem- Stoke’s theorem. Static electric field: Electrical scalar potential- different types of potential distribution- Potential gradient-

Energy  stored  in  Electric  field  -  Derivation  of  capacitance  of  two  wire  transmission  line  and

coaxial cable –Electrostatic boundary conditions– Steady magnetic field: Ampere’s Law, Faraday’s Law, Helmholtz’s theorems, Energy stored in magnetic fields- Magnetic dipole- Magnetic

boundary  conditions-  Vector  magnetic  potential  A-  Magnetic  field  intensity,

transmission line and coaxial cable- Relation between E, V and A.- Equation of continuity, Poisson and Laplace equations.

Module  II  (12  hours)

Maxwell’s equations and travelling waves: Conduction current and displacement current, Maxwell’s equations- Plane waves- Poynting theorem and Poynting vector- Power flow in a co-axial cable – Instantaneous Average and Complex Poynting Vector. Plane electromagnetic waves- Solution for free space condition- Uniform plane wave:-wave equation for conducting medium- wave propagation in conductors and dielectric, depth of penetration, reflection and

refraction    of    plane    waves    by    conductor    and    dielectric.    Wave    polarization    -

electromagnetic wave and derivation of polarization angle.

Module  III (14  hours)

Guided wave :-Guided waves between parallel planes- Transverse Electric and Transverse Magnetic waves and its characteristics- Waves in Rectangular Waveguides- Transverse Magnetic Waves in Rectangular Wave guides – Transverse Electric Waves in Rectangular Waveguides – characteristic of TE and TM Waves – Cut off wavelength and phase velocity – Impossibility of TEM waves in waveguides – Dominant mode in rectangular waveguide – Attenuation of TE and TM modes in rectangular waveguides – Wave impedances – characteristic impedance – Excitation of modes.

Moddule  IV(  10  hours)


Circular waveguides and resonators:- Bessel functions – Solution of field equations in cylindrical co-ordinates – TM and TE waves in circular guides – wave impedances and characteristic impedance – Dominant mode in circular waveguide – excitation of modes – Microwave cavities, Rectangular cavity resonators, circular cavity resonator, Q factor of a cavity resonator.

Module  IV  (10hours)

Transmission  lines:-  Uniform  transmission  line-  Transmission  line  equations.   Voltage  and

Current distribution, loading of transmission lines. Transmission line Parameters – Characteristic impedance - Definition of Propagation Constant. General Solution of the transmission line, Derivation of input impedance of transmission line. VSWR and reflection coefficient – wavelength and velocity of propagation. Waveform distortion – distortion less transmission line. The quarter wave line and impedance matching:-The Smith Chart – Application of the Smith Chart – Single stub matching and double stub matching.

REFERENCES

  1. W H.Hayt & J A Buck : “Engineering Electromagnetics” Tata McGraw-Hill, 7th Edition 2007.

  1. Mathew N.O.  Sadiku: “Elements  of  Electromagnetics”–, Oxford Pub, 3rd  Edition.

3.      David K.Cheng: “Field and Wave Electromagnetics - Second Edition-Pearson Edition, 2004.

4.      W H.Hayt & J A Buck ,“Problems and Solutions in Electromagnetics” - Tata McGraw-Hill,2010

5.        E.C. Jordan & K.G. Balmain: “Electromagnetic Waves and Radiating Systems.” PHI.

  1. J. D. Kraus : “Electromagnetics”, 5th  Edition, Mc Graw Hill Publications.

  1. Edminister :  Electromagnetics”, Schaum series, 2  Edn.

  1. D A Pozar, Microwave Engineering, Wiley

  1. Umran S. Inan & Aziz S. Inan: Engineering Electromagnetics, Pearson Education, 1999.

  1. Nannapaneni Narayana Rao: Elements of Engineering Electromagnetics, 5th Edition, Pearson Education.

  1. Clayton R.Paul ,Keith W.Whites, Syed A Nasar “Introduction to Electromagnetic Fileds” TATA McGraw-Hill 3rd Edition

Mahatma  Gandhi University



EC010  506  MICROPROCESSORS  AND  APPLICATIONS
Teaching  scheme                                                                                              Credits:  4
3  hours  lecture  and  1  hour  tutorial  per  week.


Objectives
        To  study  the  architecture  of  microprocessors  8085  and  8086.
        To  understand  the  instruction  set  of  8085.
        To  know  the  methods  of  interfacing  them  to  the  peripheral  devices.
        To  use  all  the  above  in  the  design  of  microprocessor  based  systems.

Module  I  (12hours)

Introduction to microprocessors and microcomputers: Function of microprocessors-organisation of a microprocessor based system – microprocessor architecture and its operations – memory – I/O devices - pin configuration and functions of 8085 – tristate bus concept - control signals– de-multiplexing AD0-AD7 – flags - memory interfacing - I/O addressing - I/O mapped I/O - memory mapped I/O schemes - instruction execution - fetch/execute cycle - instruction timings and operation status.

Module  II  (12  hours)

Intel 8085 instruction set - instruction and data format – simple programs - programs in looping, counting and indexing – 16 bit arithmetic operations - stack and subroutines - basic concepts in serial I/O – 8085 serial I/O lines

Module  III  (12  hours)

Basic interfacing concepts – interfacing input devices – interfacing output devices – interfacing as memory mapped I/O - Interrupts – vectored interrupt – restart as software instruction – interfacing A/D and D/A converters.
.
Module  IV  (12  hours)

Programmable interface devices – basic concepts – 8279 programmable keyboard / display interface – 8255A programmable peripheral interface – 8254 programmable interval timer – 8259A programmable interrupt controller - DMA and 8237 as DMA controller.

Module  V  (12  hours)

Intel 8086 Microprocessor - Internal architecture – Block diagram – Minimum and maximum mode operation – Interrupt and Interrupt applications – memory organization – even and odd memory banks – segment registers – logical and physical address – advantages and disadvantages of physical memory.


Reference

1.       Ramesh  S  Goankar,  8085  Microprocessors  Architecture  Application  and  Programming,
Penram International,  5th  edition, 1999.
2.       Aditya  P  Mathur,  Introduction  to  Microprocessor,  Tata  McGraw-Hill,  3rd  edition, 2002.

3.       Douglas  V  Hall,  Microprocessors  and  Interfacing,  Tata  McGraw-Hill  2nd  edition,  2008.
4.      N Senthil Kumar, M Saravanan, Microprocessors and Microcontrollers, Oxford University press, 2010.

5.      John Uffenbeck, Microcomputer and Microprocessor, The 8080, 8085 And Z80 Programming, Interfacing and Trouble Shooting, PHI, 3rd edition, 2006.

6.      Michel Slater, Microprocessor Based Design A Comprehensive Guide to Effective Hardware Design, PHI, 2009.





Syllabus -  B.Tech. Electronics  &  Communication  Engg.

Mahatma  Gandhi University


7.      P K Ghosh, P R Sridhar, 0000 to 8085 Introduction to Microprocessors for Engineers and Scientists, Prentice Hall of India, 2nd edition, 2006.


 


Syllabus -  B.Tech. Electronics  &  Communication  Engg.





EC010  507  DIGITAL  ELECTRONICS  LAB

Teaching  scheme                                                                                         Credits:  2

3  hours  practical  per  week.

Objectives

          To  provide  experience  on  design,  testing,  and  realization  of  few  digital  circuits  used.

          To  understand  basic  concepts  of  memories,  decoders  etc.


LIST  OF  EXPERIMENTS:-

1.       Study of Logic Gates: Truth-table verification of OR, AND, NOT, XOR, NAND and NOR gates.

2.        Implementation  of  the  given  Boolean  function  using  logic  gates  in  both  SOP  and  POS  forms.

3.        Design  and  Realization  of  half,  full  adder  or  subtractor  using  basic  gates  and  universal  gates.

4.       Flip  Flops:  Truth-table  verification  of  JK  Master  Slave  FF,  T  and  D  FF.

5.       Asynchronous  Counter:  Realization  of  4-bit  up  counter  and  Mod-N  counters.

6.       Synchronous  Counter:  Realization  of  4-bit  up/down  counter  and  Mod-N  counter.

7.       Shift  Register:  Study  of  shift  right,  SIPO,  SISO,  PIPO,  PISO  and  shift  left  operations

8.       Ring  counter  and  Johnson  Counter.

9.       Design  examples  using  Multiplexer  and  De  multiplexer.

10.    LED  Display:  Use  of  BCD  to  7  Segment  decoder  /  driver  chip  to  drive  LED  display

11.   Static  and  Dynamic  Characteristic  of  NAND  gate  (both  TTL  and  MOS)

Mini  Project  based  on  above  experiments.

Mahatma Gandhi University


EC 010 508(EE) Electric Drives and Control Lab
Teaching scheme Credits: 2 3 hours practical per week


Objectives

·          To familiarise the students with the working and characteristics of various electrical machines.

·          To provide experience on design  and analysis of   few power electronic circuits

Experiments

2.    OCC of self and separately excited D.C machines – critical resistances of various speeds. Voltage build-up with a given field circuit resistance. Critical speed for a given field circuit resistance.

2     Characteristics of D.C series motor

3     Load Test on D.C shunt motor and obtain the performance characteristics.

4.    Swinburne’s   test on D.C machine

5     Polarity, transformation ratio tests of single phase   transformers

6.    O.C and S.C tests on single phase transformers – calculation of performance using equivalent circuit – efficiency, regulation at unity, lagging and leading power factors.

7.    Load test on a single phase transformer .

8.    Load test on induction motor.

9.  Pre-determination of regulation of an alternator by emf   and  mmf methods.

10. VI characteristics of SCR .

11  VI characteristics of TRIAC.

12  R and RC-firing scheme for   control of SCR.

13   UJT-firing scheme for SCR.

14  Design and Implementation of digital firing scheme for simple SCR circuits.

.

References:

  1. Dr. P S Bimbra, Electrical Machinery, Khanna Publishers

2.    R K Rajput, A text book of Electrical Machines, Laxmi publishers

3. . Umanand, Power Electronics- Essentials and Applications, Wiley India 2009

 
Syllabus – B.Tech. Electronics and Communication Engineering

No comments:

Post a Comment

LinkWithin

Related Posts Plugin for WordPress, Blogger...