Custom Search

Saturday, 21 January 2012

MG S3 EC Syllabus




EN010301A      ENGINEERING  MATHEMATICS     II

(Common  to  all  branches  except  CS  &  IT)
Teaching  scheme                                                                             Credits:  4

2  hours  lecture and  2  hour tutorial  per  week

Objectives

        To apply standard methods and basic numerical techniques for solving problems and to know the importance of learning theories in Mathematics.

MODULE  1      Vector  differential calculus                                           (  12  hours)

Scalar and vector fields – gradient-physical meaning- directional derivative-divergence an curl - physical meaning-scalar potential conservative field- identities - simple problems

MODULE  2     Vector   integral  calculus                                  (  12  hours)

Line integral - work done by a force along a path-surface and volume integral-application of Greens theorem, Stokes theorem and Gauss divergence theorem

MODULE  3      Finite  differences                                                        (  12  hours)
Finite  difference  operators                 and     -  interpolation  using  Newtons  forward  and
backward formula – problems using Stirlings formula, Lagrange’s formula and Newton’s divided difference formula

MODULE  4      Difference  Calculus                                                    (  12  hours)

Numerical differentiation using Newtons forward and backward formula – Numerical integration – Newton’s – cotes formula – Trapezoidal rule – Simpsons 1/3rd and 3/8th rule – Difference equations – solution of difference equation

MODULE  5
Z   transforms
(  12  hours)


Definition   of
Z       transforms      transform   of   polynomial   function   and   trignometric
functions    shifting  property  ,  convolution  property  -  inverse  transformation    solution  of  1st
and  2nd
order  difference equations  with  constant  coifficients  using  Z  transforms.

Reference




1.       Erwin  Kreyszing    Advance  Engg.  Mathematics –  Wiley  Eastern  Ltd.

2.       B.S.  Grewal –  Higher  Engg.  Mathematics  -  Khanna  Publishers

3.       B.V.  Ramana  -  Higher  Engg.  Mathematics    McGraw  Hill

4.       K  Venkataraman-  Numerical  methods  in  science  and  Engg   -National publishing  co

5.       S.S  Sastry  -  Introductory  methods  of Numerical  Analysis   -PHI

6.       T.Veerarajan  and  T.Ramachandran-  Numerical Methods-  McGraw  Hill

7.       Babu  Ram –  Engg.  Mathematics -Pearson.

8.       H.C.Taneja  Advanced  Engg.  Mathematics  Vol  I    I.K.International




EN010  302  ECONOMICS  AND  COMMUNICATION  SKILLS

(Common  to  all branches)

Teaching  scheme

2hours lecture  and 2  hours tutorial  per  week                                    Credits: 4(3+1)

Objectives

        To  impart  a sound  knowledge of the fundamentals of Economics.

Economics

Module I  (7  hours)

Reserve Bank of India-functions-credit control-quantitative and qualitative techniques Commercial banks-functions- Role of Small Industries Development Bank of India and National Bank for Agriculture and Rural Development

The  stock  market-functions-problems  faced  by the  stock  market  in  India-mutual  funds

Module II  (6  hours)

Multinational corporations in India-impact of MNC’s in the Indian economy Globalisation-necessity-consequences

Privatisation-reasons-disinvestment of public sector undertakings The information technology industry in India-future prospects

Module III (6  hours)

Direct and indirect taxes- impact and incidence- merits of direct and indirect taxes-progressive and regressive taxes-canons of taxation-functions of tax system-

tax evasion-reasons for tax evasion in India-consequences-steps to control tax evasion Deficit financing-role-problems associated with deficit financing

Module IV  (5  hours)

National income-concepts-GNP, NNP, NI, PI and DPI-methods of estimating national income-difficulties in estimating national income

Inflation-demand pull and cost push-effects of inflation-government measures to control inflation

Module V  (6  hours)

International trade-case  for  free  trade-case  for protectionism

Balance of payments-causes of disequilibrium in India’s BOP-General Agreement on Tariffs and Trade-effect of TRIPS and TRIMS in the Indian economy-impact of WTO decisions on Indian industry

Text Books

1.  Ruddar Datt, Indian  Economy, S.Chand  and  Company  Ltd.

2.  K.K.Dewett, Modern  Economic  Theory, S.Chand  and Company  Ltd.

References

1.  Paul Samuelson, Economics, Tata  McGraw  Hill

2.  Terence Byres,  The Indian  Economy, Oxford  University  Press

3.  S.K.Ray, The  Indian  economy,  Prentice Hall of India

4.  Campbell  McConnel,  Economics, Tata  McGraw Hill




Communication Skills

Objectives

       To  improve Language  Proficiency  of the  Engineering  students

       To enable them to express themselves fluently and appropriately in social and professional contexts

       To  equip  them with  the  components of different  forms of writing

MODULE –  1  (15  hours)

INTRODUCTION  TO  COMMUNICATION

Communication nature and process, Types of communication - Verbal and Non verbal, Communication Flow-Upward, Downward and Horizontal, Importance of communication skills in society, Listening skills, Reading comprehension, Presentation Techniques, Group Discussion, Interview skills, Soft skills

MODULE –  II (15  hours)

TECHNICAL COMMUNICATION

Technical writing skills- Vocabulary enhancement-synonyms, Word Formation-suffix, affix, prefix, Business letters, Emails, Job Application, Curriculum Vitae, Report writing-Types of reports

Note: No university examination for communication skills. There will be internal evaluation for 1 credit.

REFERENCES

1. The functional aspects of communication skills, P.Prasad and Rajendra K. Sharma, S.K. Kataria and sons, 2007

2.      Communication skills for Engineers and Scientists, Sangeeta Sharma and Binod Mishra, PHI Learning private limited, 2010

3.      Professional Communication, Kumkum Bhardwaj, I.K. International (P) House limited, 2008

4.      English for technical Communication, Aysha Viswamohan, Tata Mc Graw Publishing company limited, 2008

EC010  303  NETWORK  THEORY

Teaching  scheme                                                                                                Credits:  4

2 hours lecture and 2 hours tutorial per week

Objectives

    To  study  time  domain,  phasor  and  Laplace  transform  methods  of  linear  circuit  analysis

Module  I  (12  hrs)


Reference directions for two terminal elements - Kirchhoff’s Laws - Independent and Dependent Sources – Resistance Networks: Node and Mesh analysis of resistance networks containing both voltage and current independent and dependent sources – Source Transformations – Superposition, Thevenin, Norton and Maximum Power Transfer Theorems applied to resistance networks

Module  II  (12  hrs)


Capacitors and Inductors – Current-voltage relationships – Step and Impulse functions – Waveshapes for Capacitor and Inductor – Series and Parallel combinations – Coupled coils – Mutual Inductance – First order Circuits: Excitation by initial conditions – Zero input response – Excitation by sources – Zero state response – Step and impulse response of RL and RC circuits - Excitation by sources and initial conditions – Complete response with switched dc sources

Module  III  (12  hrs)


Sinusoidal Steady State Analysis: Review of complex numbers – Rectangular and Polar forms – Phasors and the sinusoidal steady state response - Phasor relationships for R, L and C – Impedance and Admittance – Node and Mesh analysis, Superposition, Source transformation, Thevenin and Norton’s theorems applied to Phasor circuits – Sinusoidal Steady State power – Average Power – Maximum power transfer theorem – Phasor analysis of Magnetically coupled circuits

Module  IV  (12  hrs)


Laplace Transform: Definition of Unilateral Laplace Transform- Properties –Laplace Transform of common time functions – Inverse Laplace Transform by Partial Fraction Expansion – Initial value and Final value theorems –Solution of network differential equations - Transformation of a circuit into s-domain – Transformed equivalent of resistance, capacitance, inductance and mutual inductance – Impedance and Admittance in the transform domain – Node and Mesh analysis of the transformed circuit - Network theorems applied to the transformed circuit – Network Functions: Driving point and Transfer functions - Poles and zeros

Module  V  (12  hrs)


Frequency  Response:   Network functions in the sinusoidal steady state with s =  jω – Magnitude and

Phase response -   Magnitude and      Phase response of First order Low pass and    High pass RC

circuits –- Bode Plots – First order and Second order factors.

Two port networks: Characterization in terms of Impedance, Admittance, Hybrid and Transmission parameters – Interrelationships among parameter sets - Reciprocity theorem – Interconnection of two port networks- series, parallel and cascade.

References

  1. W H. Hayt, Kemmerly   and S M Durbin, Engineering  Circuit  Analysis, Tata Mc.Graw Hill

  1. DeCarlo, Lin, Linear  Circuit  Analysis, OUP

  1. B Carlson,   Circuits, Ceneage Learning

  1. M E. Van Valkenburg,   Network  Analysis, Prentice Hall of India.

  1. L P .Huelsman, Basic  Circuit  Theory,   Prentice Hall of India.

  1. Robert L.Boylestad ,    Introductory  Circuit  Analysis  ,   12th  e/d ,Prentice Hall of India.

  1. C A Desoer & E S Kuh, Basic  Circuit  Theory, Tata  Mc.Graw  Hill

  1. F F Kuo,   Network  Analysis  and  Synthesis,   WileyInterscience.

EC  010  304  SOLID  STATE  DEVICES

Teaching  Scheme

3  lecturer  hours  and  1  tutorial  hour                                                            Credit  :4

Objectives

        To provide students with a sound understanding of existing electronic devices, so that their studies of electronic circuits and systems will be meaningful.

        To develop the basic tools with which students can later learn about newly developed devices and applications.

Module  I  (13  hours)

Bonding forces in solids – Energy Bands – Metals, semiconductors and insulators – Direct and indirect Semiconductors – Variation of Energy Bands with alloy composition – Charge carriers in semiconductors – Electrons and holes – Effective mass – Intrinsic and extrinsic materials.

Charge concentrations – Fermi level – Electrons and hole concentrations at equilibrium – Temperature dependence of carrier concentrations – Compensation and space charge neutrality.

Drift of carriers in electric and magnetic fields – Drift and resistance – Effects of temperature on doping and mobility – High-field effects – Hall effect.

Module  II  (13  hours)

Excess carriers in semiconductors – Carrier lifetime – Direct and indirect recombination – Steady state carrier generation – Quasi Fermi levels.

Diffusion of carriers – Diffusion process – Diffusion coefficient – Einstein relation – Continuity equation – Steady state carrier injection – Diffusion length.

P-N junctions – Equilibrium conditions – Contact potential – Equilibrium Fermi levels – Space charge at a junction – Forward and reverse biased conditions – Steady state conditions – Qualitative description of current flow at a junction – Carrier injection – Diode equation – Majority and minority currents through a p-n junction – V-I characteristics of a p-n junction diode.

Module  III  (12  hours)

Reverse breakdown  in  p-n junctions –  Zener and  avalanche  mechanisms –  Breakdown  diodes.

Time variation of stored charge in p-n junctions – Reverse recovery transient – Switching diodes – Capacitance of p-n junctions – Varactor diodes.

Metal-semiconductor junctions –  Schottky  barriers –  Rectifying and ohmic contacts.

Optoelectronic devices – Optical Absorption – Solar Cells – Photo detectors – Photoluminescence and electroluminescence – Light emitting diodes – Laser diodes.

Module  IV  (12  hours)

Bipolar Junction Transistor – Bipolar Transistor action – Basic principle of operation – Simplified current relations – Modes of operation – Majority and minority current components – Emitter injection efficiency – Base transport factor – Current transfer ratio – Current amplification factor – Amplification and switching – Base width modulation – Avalanche Breakdown – Base resistance and emitter crowding

Field Effect Transistor – Basic JFET operation – pinch off and saturation – Transconductance and amplification factor – V-I characteristics – Transfer characteristics

Basic principles of high  frequency  transistors –  Schottky  transistors;  Phototransistors

Module  V  (10  hours)

Ideal MOS capacitor – Energy band structure in depletion, accumulation and inversion modes, C-V characteristics – Threshold voltage.

MOSFETs – Enhancement and depletion MOSFETs – Current-voltage relationship – Transconductance – Control of threshold voltage – Basic principles of CMOS.

Tunnel  diodes –  pnpn  diodes –  Introduction  to SCR and  IGBT.

Reference  Books

1.      B. G. Streetman, S. K. Banerjee, Solid State Electronic Devices, 6th ed., PHI Learning Pvt. Ltd., New Delhi, 2010.

2.      D. A. Neamen, Semiconductor Physics and Devices, 3rd ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010.

3.      M. S. Tyagi, Introduction to Semiconductor Materials and Devices, Wiley India Pvt. Ltd., New Delhi, 2008.

4.      J. Millman, C. C. Halkias, S. Jit, Electronic Devices and Circuits, 3rd ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010.

5.      M. K. Achuthan, K. N. Bhat, Fundamentals of Semiconductor Devices, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010.

6.       V.  Suresh  Babu,  Solid  State  Devices  and  Technology,  3rd  ed.,  Pearson  Education,  2010.

EC010  305:  ANALOG  CIRCUITS    I

Teaching  Scheme  :                                                                                             Credits  :  4
3  lecture  hours  and  1  tutorial  hour

0bjectives:

       To  understand  applications  of  diodes  and  transistors
       To  understand  working  of  MOSFET

       To provide an insight into the working, analysis and design of basic analog circuits using BJT and MOSFET

Module  I  (10)

RC Circuits: Response of high pass and low pass RC circuits to sine wave, step, pulse and square wave inputs, Tilt, Rise time. Differentiator, Integrator. Small signal diode model for low and high frequencies, clipping and clamping circuits.

Analysis of half wave, full wave and bridge rectifiers. Analysis of L, C, LC & π filters. Zener voltage regulator, transistor series (with feedback) and shunt voltage regulators, short circuit and fold back protection.

Module  II  (14)

DC analysis of BJTs - BJT as amplifier. Small signal equivalent circuits (Low frequency π and h models only). Transistor Biasing circuits, Stability factors, Thermal runaway. Small signal analysis of CE, CB, CC configurations using approximate hybrid π model (gain, input and output impedance)

Module  III  (12)

MOSFET I-V relation, load lines, small signal parameters, small signal equivalent circuits, body effect. Biasing of MOSFETs amplifiers. Analysis of single stage discrete MOSFET amplifiers – small signal voltage and current gain, input and output impedance of Basic Common Source amplifier, Common Source amplifier with and without source bypass capacitor, Source follower amplifier, Common Gate amplifier.

Module  IV  (12)

High frequency equivalent circuits of BJTs, MOSFETs, Miller effect, short circuit current gain, s-domain analysis, amplifier transfer function. Analysis of high frequency response of CE, CB, CC and CS, CG, CD amplifiers.

Module  V  (12)

Power amplifiers: Class A, B, AB and C circuits - efficiency and distortion. Biasing of class AB circuits. Transformer less power amplifiers.

Feed back amplifiers - Properties of negative feed back. The four basic feed back topologies-Series-shunt, series-series, shunt-shunt, shunt-series. Analysis and design of discrete circuits in each feedback topology - Voltage, Current, Trans conductance and Trans resistance amplifiers, loop gain, input and output impedance. Stability of feedback circuits.

References:

  1. Sedra and Smith: Microelectronic  Circuits, 4/e, Oxford University Press 1998.
  1. B.   Razavi , “Fundamentals  of  Microelectronics”, Wiley

  1. Donald A Neamen. : Electronic  Circuit  Analysis  and  Design, 3/e, Tata Mc.Graw Hill.

  1. Millman and Halkias: Integrated  Electronics, Tata Mc.Graw Hill, 2004.


5.      Spencer & Ghausi: Introduction  to  Electronic  Circuit  Design,  Pearson Education, 2003.

6.      Roger T. Howe, Charles G. Sodini: Microelectronics: An Integrated Approach, Pearson Education, 1997.

7.      R E Boylstead and L Nashelsky: Electronic Devices and Circuit Theory, 9/e, Pearson Education




EC010     306 COMPUTER PROGRAMMING

Teaching  Scheme

3  lecture  hours  and  1ntutorial  hour                                                                     4  credits

Objectives
    To  develop  the  programming  skill  using  C


Module  1  (12  hrs)

Problem solving with digital Computer - Steps in Computer programming - Features of a good program, Algorithms – Flowchart.

Introduction to C: C fundamentals - The character set - identifiers and keywords - Data types - constants - variables and arrays - declarations - expressions - statements - symbolic constants-arithmetic operators - Relational and Logical operators - The conditional operator - Library functions - Data input and output - getchar – putchar, scanf, printf - gets and puts functions - interactive programming.

Module  2  (12  hrs)

Control Statements: While - do while - for - nested loops -if else switch- break - continue - The comma operator - go to statement, Functions - a brief overview - defining a function - accessing a function - passing arguments to a function - specifying argument - data types - function prototypes - Recursion.

Module  3  (12  hrs)

Program structure: storage classes - Automatic variables - external variables - multi file programs. Arrays: defining an array - processing an array - passing arrays in a function – multi dimensional arrays - array and strings. Structures and unions: defining a structure - processing a structure - user defined data types - passing structure to a function – self referential structures - unions.

Module  4  (12hrs)

Pointers: Fundamentals - pointer declaration - passing pointers to a function - pointers and one dimensional arrays - operations on pointers - pointers and multi dimensional arrays – passing functions to other functions.

Module  5  (12  hrs)

Data files: Opening and closing of a data file - creating a data file - processing a data file, low level programming - register variables – bit wise operation - bit fields - enumeration - command line parameters - macros - the C pre-processor.

References

1.                  Byron  Gottfried, Programming  with  C,  Schaum’s  Outlines  ,Tata  Mc.Graw Hill.

2.                  Kernighan  &  Ritchie , “The  C  programming  language:”,  Prentice Hall of India..

3.                  Venkateshmurthy  , “Programming  Techniques  through  C”:, Pearson  Education.




4.                  Al  Kelley, Ira  Pohl  , “A  book  on  C” , Pearson  Education.

5.                  Balaguruswamy  ,  Programming  in  C”   , Tata Mc Graw Hill.

6.                  Ashok  N Kanthane , “Programming  with  ANSI  and  Turbo  C”, Pearson  Education.

7.                  Stephen  C. Kochan  ,  Programming  in  C” , CBS publishers.


EC010  307  ANALOG  CIRCUITS  LAB
Teaching  Schemes

3  hours  practical  per  week                                                                                Credits:  2

Objectives

          To provide experience on design, testing, and analysis of few basic electronic circuits using BJT and MOSFET.
          To  provide  experience  on  electronic  circuit  simulation  software  like  SPICE  .


2.        Characteristics  of  Diodes  &  Zener  diodes.

3.        Characteristics  of  Transistors  (CE  &  CB).

4.      Characteristics  of  MOSFET.

5.      Frequency responses of RC Low pass and high pass filters. RC Integrating and Differentiating circuits.

6.      Rectifiers-half wave, full wave, Bridge with and without filter- ripple factor and regulation.

7.      Clipping  and  clamping  circuits.
8.      Zener  Regulator  with  &  without  emitter  follower.

9.      RC  Coupled  CE  amplifier  -  frequency  response  characteristics.

10.  MOSFET  amplifier  (CS)  -  frequency  response  characteristics.

11.  Feedback  amplifiers  (current  series,  voltage  series)  -  Gain  and  frequency  response

12.    Power  amplifiers  (transformer  less),  Class  B  and  Class  AB.


Introduction  to  SPICE

Models of resistor, capacitor, inductor, energy sources (VCVS, CCVS, Sinusoidal source, pulse, etc) and transformer.

Models  of DIODE,  BJT,  FET,  MOSFET,  etc..

Simulation of following circuits using spice (Schematic entry of circuits using standard packages).

Analysis- (transient,  AC,  DC,  etc.):
1.  Potential divider.
2.  Integrator &  Differentiator  (I/P  PULSE)    Frequency  response  of RC  circuits.
3.  Diode  Characteristics.
4.  BJT  Characteristics.

5.  FET  Characteristics.
6.  MOS  characteristics.
7.  Full  wave rectifiers (Transient  analysis)  including  filter  circuits.

8.  Voltage  Regulators.
9.  Sweep  Circuits.
10.  RC  Coupled  amplifiers  -  Transient  analysis  and  Frequency  response.
11.  FET  &  MOSFET  amplifiers.

EC010 308:PROGRAMMING   LAB
Teaching  scheme                                                                                Credits:  2
3  hours  practical  per  week




Objectives

         To familiarize with computer hardware, operating systems and commonly used software packages
         To  learn  computer  programming  and  debugging


Part  1

  1. Computer  hardware  familiarization.

  1. Familiarization/installation  of  common  operating  systems  and  application  software.

Part  2

Programming Experiments in C/C++: Programming experiments in C/C++ to cover control structures, functions, arrays, structures, pointers and files.

No comments:

Post a Comment

LinkWithin

Related Posts Plugin for WordPress, Blogger...