Custom Search

Saturday 28 January 2012

Colourful Alphabets for facebook chat

Freinds we normally chat with simple ordinary 'black and white' letters,
let's try something NEW
want some cool colorful alphabets for your facebook chat,
I am here to help you,
just copy the below given codes in facebook chat and see the MAGIC

[[107015582669715]] = A
[[116067591741123]] = B
[[115602405121532]] = C
[[112542438763744]] = D
[[115430438474268]] = E
[[109225112442557]] = F
[[111532845537326]] = G
[[111356865552629]] = H
[[109294689102123]] = I
[[126362660720793]] = J
[[116651741681944]] = K
[[115807951764667]] = L
[[106596672714242]] = M
[[108634132504932]] = N
[[116564658357124]] = O
[[111669128857397]] = P
[[107061805996548]] = Q
[[106699962703083]] = R
[[115927268419031]] = S
[[112669162092780]] = T
[[108983579135532]] = U
[[107023745999320]] = V
[[106678406038354]] = W
[[116740548336581]] = X
[[112416755444217]] = Y
[[165724910215]] = Z
So Now try it out...........

Read more

Tuesday 24 January 2012

EC S6 Syllabus




EC010  601  DIGITAL  COMMUNICATION  TECHNIQUES

Teaching  scheme                                                                                          Credits:  4

2 hours  lecture  and 2 hour tutorial per  week



Objectives: To develop ability to analyze communication engineering problems and also to design and develop different communication and electronics systems for processing signals and data.

MODULE I       (12 hrs)

Random Signal Theory: Random process: stationarity,ergodicity, mean, auto correlation, cross correlation, covariance, random process transmission through linear filters, power spectral density, cross correlation functions, cross spectral densities, Gaussian process, Discrete Time Random Process, White Process

Signal Space Representation of Waveforms: Vector Space Concept, Signal Space Concepts, Orthogonal Expansion, Gram- Schmidt Orthogonalization Procedure

MODULE II     (12 hrs)

Detection and Estimation: Model of digital communication system, response of bank of correlators to noisy input. Detection of known signals in noise:-ML Receiver. Probability of error calculation, erf, Correlation Receiver, Matched Filter Receiver, properties, detection of signals with unknown phase in noise, Estimation concepts: ML Estimate.

MODULE III   (12 hrs)

Pulse Modulation Techniques: Sampling and pulse modulation: Sampling theorem, Ideal sampling and reconstruction, practical sampling and Aliasing, PAM, PWM, PPM, Quantizing, Quantization Noise, Companding, PCM generation and reconstruction, DPCM, Delta Modulation, Adaptive Delta Modulation, digital multiplexing

MODULE IV  (12 hrs)

Baseband shaping for Data Transmission: Binary signaling format, Inter Symbol Interference, Nyquist criterion for distortion less base band binary transmission: Ideal solution, practical solution, correlative coding: Duobinary signaling, modified duobinary, generalized form of correlative coding, eye pattern, equalization ,adaptive equalization, synchronization techniques: bit synchronization, frame synchronization






MODULE V   (12 hrs)

Bandpass Digital Transmission: Digital CW Modulation: ASK, BFSK, BPSK, MSK, Coherent binary system, timing and synchronization, Non coherent binary system, Differentially coherent PSK, Quadrature carrier and M-ary systems: quadrature carrier system, MPSK, M-ary QAM, Trellis coded modulation



References:

1.  Simon  Haykin  , Introduction  To  Analog  And  Digital  Communications, Wiley India Edition

2.  Proakis& Salehi,  Digital  Communications, Mc Graw  Hill International Edition.

3.   Herbert Taub, Schilling Donald L.,“Principles of Communication Systems,3rd e/d, Tata Mc Graw Hill,2007.

4.  Carlson, Crilly, Rutledge, “Communication  Systems”  4th   Edition,  McGraw Hill

5.  Simon  Haykin  , Digital  Communications, Wiley  India Edition

6.  Sklar,Kumar  Ray,  Digital  Communications, Pearson Education

7.  Glover,Grant,  Digital  Communications,  Pearson  Education




EC010  602  DIGITAL  SIGNAL  PROCESSING

Teaching  scheme                                                                                             Credits: 4

2  hours  lecture  and  2  hours  tutorial per  week

Objectives

    To  study  the  fundamentals  of  discrete-time  system  analysis,  digital  filter  design  and  the  DFT

Module  I  (12  hrs)

Advantages of DSP – Review of discrete time signals and systems – Discrete time LTI systems – Review of DTFT – Existence – Symmetry properties – DTFT theorems – Frequency response-Review of Z transform – ROC – Properties

Sampling of Continuous time signals – Frequency domain representation of sampling – Aliasing - Reconstruction of the analog signal from its samples – Discrete time processing of continuous time signals – Impulse invariance – Changing the sampling rate using discrete time processing – Sampling rate reduction by an integer factor – Compressor – Time and frequency domain relations – Sampling rate increase by an integer factor – Expander – Time and frequency domain relations – Changing the sampling rate by a rational factor.

Module  II  (12  hrs)

Transform analysis of LTI systems – Phase and group delay – Frequency response for rational system functions – Frequency response of a single zero and pole – Multiple poles and zeros - Relationship between magnitude and phase – All pass systems – Minimum phase systems – Linear phase systems – Generalised linear phase – 4 types – Location of zeros.

Module  III  (12  hrs)

Structures for discrete time systems – IIR and FIR systems – Block diagram and SFG representation of difference equations – Basic structures for IIR systems – Direct form - Cascade form - Parallel form - Transposed forms – Structures for FIR systems – Direct and Cascade forms - Structures for Linear phase systems – Overview of finite precision numerical effects in implementing systems

Analog filter design: Filter specification – Butterworth approximation – Pole locations – Design of analog low pass Butterworth filters – Chebyshev Type 1 approximation – pole locations – Analog to analog transformations for designing high pass, band pass and band stop filters.

Module  IV  (12  hrs)

Digital filter design: Filter specification – Low pass IIR filter design – Impulse invariant and Bilinear transformation methods – Butterworth and Chebyshev – Design of high pass, band pass and band stop IIR digital filters – Design of FIR filters by windowing – Properties of commonly used windows – Rectangular, Bartlett, Hanning, Hamming and Kaiser.






Module  V  (12  hrs)

The Discrete Fourier Transform - Relation with DTFT – Properties of DFT – Linearity – Circular shift – Duality – Symmetry properties – Circular convolution – Linear convolution using the DFT – Linear convolution of two finite length sequences – Linear convolution of a finite length sequence with an infinite length sequence – Overlap add and overlap save – Computation of the DFT – Decimation in time and decimation in frequency FFT – Fourier analysis of signals using the DFT – Effect of windowing – Resolution and leakage – Effect of spectral sampling.

References

1.      A V Oppenheim, R W Schaffer, Discrete Time Signal Processing , 2nd Edition Pearson Education.

2.       S K  Mitra, Digital  Signal  Processing:  A  Computer  Based  Approach  ,Tata Mc.Graw  Hill.

3.      J G Proakis, D G Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice Hall of India..

4.      L  C  Ludeman,  Fundamentals  of  Digital  Signal  Processing,  Wiley

5.      J  R  Johnson, Introduction  to  Digital  Signal  Processing,  Prentice  Hall of  India.


Fractal antenna
EC010  603     RADIATION  AND  PROPAGATION

Teaching  Schemes                                                                                         Credits:  4

3  hours  lecture  and  1  hour  tutorial  per  week.

OBJECTIVES

       To  impart  the  basic  concepts  of  radiating  structures  and  their  arrays
             To  give  understanding  about  analysis  and  synthesis  of  arrays
       To  give  idea  about  basic  propagation  mechanisms

MODULE  1  (  13  hours)

Retarded potentials: Concept of vector potential- Modification for time varying- retarded case- Fields associated with Hertzian dipole- Power radiated and radiation resistance of current element-Radiation from half-wave dipole and quarter-wave monopole antennas.

Antenna Parameters: Introduction, Isotropic radiators, Radiation pattern, Gain -radiation intensity-Directive gain, Directivity, antenna efficiency- antenna field zones. Reciprocity theorem & its applications, effective aperture, Effective height, radiation resistance, terminal impedance, front-to-back ratio, antenna beam width, antenna bandwidth, antenna beam efficiency, antenna beam area or beam solid angle, polarization, antenna temperature.

MODULE  2  (13hours)

Antenna Arrays: Introduction, various forms of antenna arrays, arrays of point sources, non isotropic but similar point sources, multiplication of patterns, arrays of n-isotropic point sources, Grating lobes, Properties and Design of Broadside, Endfire, Binomial and Dolph Chebyshev arrays, Phased arrays, Frequency- Scanning arrays- Adaptive arrays and Smart antennas.

MODULE  3  (13hours)

Antenna Types:- Horizontal and Vertical Antennas above the ground plane. Loop Antennas: Radiation from small loop and its radiation resistance- Radiation from a loop with circumference equal to a wavelength-Helical antenna: Normal mode and axial mode operation-Yagi uda Antenna- Log periodic antenna- rhombic antenna- Horn antenna-Reflector antennas and their feed systems- Micro strip antenna-Selection of antenna based on frequency of operation – Antennas for special applications: Antenna for terrestrial mobile communication systems, Ground Penetrating Radar(GPR), Embedded antennas, UWB,

,Plasma antenna.

MODULE  4  (13hours)

Ground wave propagation: Attenuation characteristics for ground wave propagation-Calculation of field strength at a distance


Space wave propagation: Reflection characteristics of earth- Resultant of direct and reflected ray at the receiver- LOS distance – Effective earth‘s radius – Field strength of space wave - duct propagation

Sky wave propagation: Structure of the ionosphere- effect of earth‘s magnetic field Effective dielectric constant of ionized region- Mechanism of refraction- Refractive index- Critical frequency- Skip distance- Effect of earth’s magnetic field- Attenuation factor for ionospheric propagation- Maximum usable frequency(MUF) – skip distance – virtual height – skip distance, Fading and Diversity reception.

MODULE  5  (8  hours)

Antenna Measurements: Reciprocity in Antenna measurements – Measurement of radiation pattern – Measurement of ranges - Measurement of different Antenna parameters- Directional pattern, Gain, Phase, Polarization, Impedance, and Efficiency, Effective gain,SAR.


REFERENCES

  1. John D. Krauss, Ronald J Marhefka: “Antennas and Wave Propagation”, 4th Edition, Tata Mc Graw Hill

  1. Jordan & Balman. “Electromagnetic waves & Radiating Systems”– Prentice Hall India

  1. Constantine. A. Balanis: “Antenna Theory- Analysis and Design”, Wiley India, 2nd Edition, 2008

  1. R.E Collin: “Antennas  &  Radio  Wave  Propagation”,  Mc Graw Hill. 1985.
  1. Terman: “Electronics  &  Radio  Engineering”, 4th  Edition,  McGraw Hill.

  1. Kamal Kishor: “Antenna  and  Wave  propagation”  , IK International

Mahatma Gandhi University


EC010  604:  COMPUTER  ARCHITECTURE  AND  PARALLEL

PROCESSING
Teaching  scheme                                                                                  Credits:  4

3 hours lecture and 1 hour tutorial per week

Objectives
         To  impart  the  basic  concepts  of  architecture  and  organisation  of  computers

         To  develop  understanding  about  pipelining  and  parallel  processing  techniques.
         To  impart  knowledge  about  the  current  PC  hardware

Pre-requisites:   Digital  Electronics  and  Microprocessors

Module  I  (12  hours)

Introduction : Difference between Architecture, Organisation and Hardware, Review of basic operational concepts – Stored program concept, Instruction sequencing, bus structure, Software support- translating and executing a program- assembler, linker, loader, OS, Instruction types and Addressing modes.

CPU Performance and its factors, Performance evaluation, The Power wall, Switch from uniprocessors to multiprocessors, Basic concepts of pipelining, superscalar architecture and multithreading, Instruction level parallelism (basic idea only).

Module  II  (12  hours)

Processor Organisation: Control Unit design: Execution of a complete instruction, Single bus and multibus organisation, Sequencing of control signals, Hardwired control unit, Microprogrammed control unit.

Arithmetic and logic design – review of signed and unsigned binary arithmetic, fast adders, Array multiplier, sequential multiplier, Booth’s algorithm, fast multiplication methods, integer division – restoring and non restoring methods, floating point numbers.

Module  III  (12  hours)

Memory and I/O Organisation Memory hierarchy, Memory characteristics, Internal organization of semiconductor RAM memories, Static and Dynamic RAM memories, flash memory, Cache memory – mapping function, replacement algorithm, measurement and improvement of cache performance, Virtual memory and address translation, MMU.

Secondary memories – magnetic and optical disks, I/O accessing – Programmed, Interrupt driven and DMA , Buses- synchronous and asynchronous, bus standards.

Module  IV  (12  hours)

Parallel Processing :Enhancing performance with pipelining-overview, Designing instruction set for pipelining, pipelined datapath, Hazards in pipelining.

Flynn’s classification, Multicore processors and Multithreading, Multiprocessor systems-Interconnection networks, Multicomputer systems, Clusters and other message passing architecture.






Syllabus - B.Tech. Applied Electronics & Instrumentation Engg.

Mahatma Gandhi University



Module  V  (12  hours)

PC Hardware: Today’s PC architecture – block diagram, Familiarisation of PC hardware components.

Processor - Pentium series to higher processors - single core, hyperthreading, dual core, multi core and many core processors (brief idea about evolution and improvements in performance)

Motherboard – Typical architecture , Essential Chipsets, Sockets, Slots and ports – serial, parallel, USB, RAM , Brief idea about buses, Subsystems (Network, Sound and Graphics, Ethernet port),

Storage devices : Hard Disks-Types and Classification based on interface- Optical Storage – CD, DVD, BLURAY

SMPS – Functions, power connectors. Typical specifications for a computer

Reference  Books

  1. Carl Hamacher   : “Computer Organization ”, Fifth Edition, Mc Graw Hill.

  1. David A. Patterson and John L.Hennessey, “Computer Organisation and Design”, Fourth Edition, Morgan Kaufmann.

  1. William Stallings : “Computer Organisation and Architecture”, Pearson Education.

  1. John P Hayes : “Computer Architecture  and Organisation”, Mc Graw Hill.

  1. Andrew S Tanenbaum : “Structured Computer Organisation”, Pearson Education.

  1. Craig Zacker  : “PC Hardware : The Complete Reference”, TMH.
  1. Nicholas P Carter : “Computer Architecture and Organization”, Mc Graw Hill.

  1. Pal Chaudhari: “Computer Organisation and Design”, Prentice hall of India.

 



Syllabus - B.Tech. Applied Electronics & Instrumentation Engg.

Mahatma Gandhi University


 


EC010  605  MICROCONTROLLERS  AND  APPLICATIONS
Teaching  scheme                                                                                              Credits:  4
3  hours lecture and  1  hour tutorial  per week

Objectives
        To  study  the  architecture  of  8051,  PIC18  microcontrollers
        To  understand  the  instruction  set  and  programming  of  8051.
        To  know  the  Interfacing  methods  and  programming  using  8051.

Module  I  (9hours)

Introduction to Microcontrollers: Comparison with Microprocessors – Harvard and Von Neumann Architectures - 80C51 microcontroller – features - internal block schematic - pin descriptions, I/O ports.

Module  II  (9  hours)

Memory organization – Programming model - Program status word - register banks - Addressing modes - instruction set –Programming examples.

Module  III  (9  hours)

Interrupts - interrupt sources - interrupt handling – programming examples. Timers operation-different modes –waveform generation- programming examples - Serial communication-different modes - programming examples.

Module  IV  (9  hours)

Interfacing of DIP switch- LED -7 segment displays -alphanumeric LCD – relay interface – Stepper motor –ADC-DAC-interfacing programs using assembly language.

Module  V(9  hours)

Overview of PIC 18, memory organisation, CPU, registers, pipelining, instruction format, addressing modes, instruction set, interrupts, interrupt operation, resets, parallel ports, timers, CCP.

References

1.       Muhammad Ali Mazidi, The 8051 Microcontroller and embedded sytems, Pearson Education 2nd edition, 2006

2.       Kenneth J Ayala, The 8051 Microcontroller, Penram International, 3rd edition 2007

3.       Myke Predko, “Programming and customizing the 8051 microcontroller” Tata Mc.Graw Hill, 2004

4.       Han Way Huang, “PIC microcontroller An introduction to software and hardware interfacing”, Cenage learning 2007

5.       Muhammad Ali Mazidi “PIC microcontroller and embedded systems using assembly and C for PIC 18” , Pearson 2009


 




Syllabus -  B.Tech. Electronics &  Communication  Engg.

Mahatma  Gandhi University


EC010  606  L01:  DATA  STRUCTURES  AND  ALGORITHMS
Teaching  scheme                                                                                              Credits:  4
3  hours  lecture  and  1  hour  tutorial  per  week

Objectives
         To  impart  the  basic  concepts  of  data  structures  and  algorithms.

         To develop understanding about writing algorithms and solving problems with the help of fundamental data structures using object oriented concepts.


Module  I  (10  hours)

Introduction to Data Structures, arrays, records, stacks, queue, linked list, linked stacks and queues, doubly linked list. Polynomial representation using arrays and lists.

Module  II  (12hours)

Trees, binary tree, traversals, binary search tree, creation insertion, deletion, searching. Graph:-representation, depth first search, breadth first search, path finding.

Module  III  (12hours)

Search algorithms, sequential binary interpolation, sorting, insertion, bubble, radix, quick sort, merge sort, and heat sort.

Module  IV  (14  hours)

Analysis of algorithms: - Time and space complexity, complexity notations, best, worst, average cases.

Algorithmic techniques-brute force, greedy, divide and conquer, dynamic programming

Module  V  (12  hours)

Analysis of search algorithms, sort algorithms. P and NP problems, travelling sales man problems.

Reference  Books

1.       Horowitz ,Sahni & Anderson Freed, Fundamentals of Data Structures in C, 2nd ed., Universities Press, Hyderabad, 2009

2.       Sartaj Sahni , Data Structures, Algorithms and Applications in C++ , 2nd ed., Universities Press, Hyderabad, 2009

3.       Michael T Goodrich, Roberto Tamassia, David Mount, Data Structures and Algorithms in C++, Wiley India Edition, New Delhi, 2009

4.       B.M. Harwani, Data Structures and Algorithms in C++, Dreamtech Press, New Delhi, 2010

5.       Langsam, Augenstein ,Tanenbaum, Data Structures in C & C++ , 2nd Edition, Pearson Education.

6.       John Hopcroft, Rajeev Motwani & Jeffry Ullman, Introduction to Automata Theory, Languages & Computation, Pearson Education.

7.       Tremblay & Sorenson, Introduction to Data Structures with Applications, Tata Mc Graw Hill

8.       Sara Baase & Allen Van Gelder ,Computer Algorithms – Introduction to Design and Analysis , Pearson Education
9.       Sahni,  Data  Structures  algorithms  and  applications  ,  Tata  Mc  GrHill





Syllabus  -  B.Tech.  Computer  Science  &   Engg.

Mahatma  Gandhi University


10. K.L.P. Mishra, N. Chandrashekharan, Theory of Computer Science , Prentice Hall of India

 

Syllabus  -  B.Tech.  Computer  Science  &   Engg.

Mahatma Gandhi University


EC010  606  L602:  DATABASE  MANAGEMENT  SYSTEMS

Teaching  scheme                                                                                              Credits:  4

3 hours lecture and 1 hour tutorial per week

Objectives
         To  impart  an  introduction  to  the  theory  and  practice  of  database  systems.

          To  develop  basic  knowledge  on  data  modelling  and  design  of  efficient  relations.

         To  provide  exposure  to  oracle  database  programming.


Module  I
(10  hours)








Basic    Concepts    -    Purpose
of
Database
Systems-
3
Schema
Architecture
and
Data

Independence- Components of DBMS –Data Models, Schemas and Instances-Data Modeling using the Entity Relationship Model-Entity types, Relationship Types, Weak Entity Types .

Module  II         (14  hours)

Relational    Model    Concepts    –Constraints        Entity    Integrity    and    Referential    Integrity,

Relational Algebra -Select, Project, Operations from Set Theory, Join, OuterJoin and Division - Tuple Relational Calculus.

SQL- Data Definition with SQL - Insert, Delete and Update Statements in SQL, Defining Domains, Schemas and Constraints, Constraint Violations - Basic Queries in SQL - Select Statement, Use of Aggregate functions and Group Retrieval, Nested Queries, Correlated Queries – Views.

Module  III       (12  hours)

Oracle Case Study : The Basic Structure of the Oracle System – Database Structure and its Manipulation in Oracle- Storage Organization in Oracle.- Programming in PL/SQL- Cursor in PL/SQL - Assertions – Triggers.

Indexing and Hashing Concepts -: Ordered Indices, Hash Indices, Dense and Sparse Indices, Multi Level Indices, Cluster Index, Dynamic Hashing.

Module  IV
(11  hours)






Database
Design–
Design
Guidelines–
Relational
Database
Design
Functional










Dependency- Determination of Candidate Keys, Super Key, Foreign Key, Normalization using Functional Dependencies, Normal Forms based on Primary keys- General Definitions of First, Second and Third Normal Forms. Boyce Codd Normal Form– Multi-valued Dependencies and Forth Normal Form – Join Dependencies and Fifth Normal Form – Pitfalls in Relational Database Design.

Module  V         (13  hours)

Introduction to Transaction Processing- Transactions- ACID Properties of Transactions-Schedules- Serializability of Schedules- Precedence Graph- Concurrency Control – Locks and Timestamps-Database Recovery

Query processing and Optimization- Translating SQL Queries into a Relational Algebra Computing Select, Project and Join

Object Relational Databases-Distributed Databases-Different Types-Fragmentation and Replication Techniques-Functions of DDBMS.




Syllabus - B.Tech. Computer Science &   Engg.

Mahatma Gandhi University



Reference  Books

1.    Elmsari and Navathe, Fundamentals of Database System, Pearson Education Asia, 5th Edition, New Delhi, 2008.

  1. Henry  F Korth, Abraham Silbershatz , Database  System  Concepts, Mc Graw  Hill
6td  Edition, Singapore, 2011.

3.      Elmsari and Navathe, Fundamentals of Database System, Pearson Education Asia, 3rd Edition, New Delhi, 2005, for oracle

  1. Alexis Leon and Mathews Leon, Database Management Systems, Leon vikas Publishers, New Delhi.

  1. Narayanan S, Umanath and Richard W.Scamell, Data Modelling and Database Design,Cengage Learning, New Delhi, 2009.

  1. S.K Singh,Database Systems Concepts,Design and Applications, Pearson Education Asia, New Delhi, 2006.

  1. Pranab Kumar Das Gupta,  Database  management  System  Oracle  SQL  And
PL/SQL,  Easter Economy  Edition, New Delhi, 2009
8.       C.J.Date   ,   An   Introduction   to   Database   Systems,
Pearson
Education
Asia,
7th
Edition, New Delhi.





  1. Rajesh Narang, Database Management Systems, Asoke K ghosh , PHI Learning, New Delhi, 2009.

  1. Ramakrishnan and Gehrke, Database Management Systems, Mc Graw Hill, 3rd Edition , 2003.


Syllabus - B.Tech. Computer Science &   Engg.

Mahatma  Gandhi University


EC010  606L03  HIGH  SPEED  DIGITAL  DESIGN
Teaching  scheme                                                                                              Credits:  4
3  hours  lecture  and  1  hour tutorial  per  week

Objectives

        To develop the skills for analyzing high-speed circuits with signal behaviour modelling.

        To demonstrate proficiency in understanding signal integrity concepts and terminology and to understand the signal integrity on circuit design.

        To be able to perform and analyze signal measurements and to be able to make trade off decisions based on signal budget and design requirements.

Pre-requisites:     Digital  Electronics,  Digital  system design

Module  I  (12hours)

High Speed Digital Design Fundamentals: Frequency and time, Time and distance, Lumped vs distributed, four kinds of reactance- ordinary capacitance and inductance, mutual capacitance and inductance, Relation of mutual capacitance and mutual inductance to cross talk.

High Speed properties of Logic gates: Power, Quicent vs active dissipation, Active power driving a capacitive load, Input power, Internal dissipation, drive circuit dissipation, Totem pole and open circuit, speed, Sudden change in voltage and current.

Module  II  (12  hours)

Measurement Techniques; Rise time and bandwidth of oscilloscope probes, self inductance of probe ground loop, Effects of probe load on a circuit, special probing fixtures.

Transmission  Lines;  Problems  of  point  to  point  wiring,  signal  distortion,  EMI,  cross  talk.

Module  III  (12  hours)

Transmission Lines at High frequency: Infinite uniform transmission line, Lossy transmission line, Low loss transmission line, RC transmission line, Skin effect, Proximity effect, and Dielectric loss.

Module  IV  (12  hours)

Termination: End termination, rise time, dc biasing, power dissipation, Source termination, Resistance value, Rise time, Power dissipation, Drive current, Middle terminators,

Vias: mechanical properties, capacitance and inductance Connectors: mutual, series and parasitic capacitance.

Module  V  (12  hours)

Power system: Stable voltage reference, Uniform voltage distribution, choosing a bypass capacitor,

Clock  Distribution:  Timing  margin,  Clock  skew,  delay  adjustments,  Clock  jitter.

Reference

1.        Howard  Johnson,  High-Speed  Digital  Design:  A  Handbook  of  Black  Magic  ,  Prentice  Hall

2.        Dally  W.S.  & Poulton  J.W.,  Digital  Systems  Engineering”,  Cambridge  University  Press.

3.        Masakazu  Shoji,  High  Speed  Digital  Circuits”,  Addison  Wesley  Publishing  Company

4.        Jan  M,  Rabaey,  Digital  Integrated  Circuits:  A  Design  perspective,  Second  Edition,  2003.








Syllabus -  B.Tech.  Electronics  &  Communication  Engg.

EC  010  606  L04  MEDICAL  ELECTRONICS

Teaching  Scheme

3  hours  lecture  and  1  hour  tutorial  per  week.                                                               Credits:  4

Objectives:-

   To  study  the  working  of  different  medical  equipments.

Module  1  (12  hrs)

Introduction to the physiology of cardiac, nervous & muscular and respiratory systems. Transducers and Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory, selection criteria of electrodes & different types of electrodes such as, Ag - Ag Cl, pH, etc

Module  2  (12  hrs)

Cardiovascular measurement: The heart & the other cardiovascular systems. Measurement of Blood pressure-direct and indirect method, Cardiac output and cardiac rate. Electrocardiography-waveform-standard lead systems typical ECG amplifier, phonocardiography, Ballisto cardiography, Cardiac pacemaker –defibrillator –different types and its selection.

Module  3  (12  hrs)

EEG Instrumentation requirements –EEG electrode –frequency bands – recording systems EMG basic principle-block diagram of a recorder –pre amplifier. Bed side monitor –block diagram- measuring parameters-cardiac tachometer-Alarms-Lead fault indicator-central monitoring. Telemetry – modulation systems – choice of carrier frequency – single channel telemetry systems.

Module  4  (12  hrs)

Instrumentation for clinical laboratory: Bio electric amplifiers-instrumentation amplifiers-isolation amplifiers-chopper stabilized amplifiers –input guarding - Measurement of pH value of Blood-blood cell counting, blood flow, Respiratory transducers and instruments.

Module  5  (12hrs)

Medical Imaging: Computer tomography – basic principle, application –advantage, X ray tubes, collimators, detectors and display - Ultra sound imaging

References

1.   J  J  Carr,  Introduction  to  Biomedical  Equipment  Technology”  :  Pearson Education  4th  e/d.
2.  K  S  Kandpur,  Hand  book  of  Biomedical  instrumentation”,  Tata  McGraw  Hill  2nd  e/d.
3.  John  G  Webster, “Medical  Instrumentation  application  and  design”,  John  Wiley  3rd  e/d.
4.  Richard Aston,  Principle  of  Biomedical  Instrumentation  and  Measurement”.




EC010  606  L05  SOFT  COMPUTING
Teaching  scheme                                                                                            Credits:  4

3  hour  lecture  and  1  hour  tutorial  per  week.

Objectives

        To  develop  basic  knowledge  about  neuron  and  neural  networks.

        To  develop  basic  knowledge  about  fuzzy  stems.

        To be able to understand basic concepts of soft computing frame work and neuro fuzzysystems

Module  1  (12  hrs)

Introduction- artificial neuron - activation functions - Single layer & multi-layer networks - Training artificial neural networks - Perception - Representation - Linear separability - Learning - Training algorithms.

Module  2  (12  hrs)

Back Propagation - Training algorithm - Applications - network configurations - Local minima -. Hopfield nets - Recurrent networks - Adaptive resonance theory - Architecture classification - Implementation

Module  3  (12  hrs)

Introduction to Fuzzy sets and systems: Fuzzy operations-support of a fuzzy set, height - normalised fuzzy set, α – cuts- The law of the excluded middle and law of contradiction on fuzzy sets. Properties of fuzzy set operations.

Module  4  (12  hrs)

Operations on fuzzy relations - projection, max-min. and min and max-compositions. Fuzzy membership functions- Fuzzy logic controller: fuzzification - Rule base – Defuzzififaction-case study for engineering applications.

Module  5  (12hrs)

Soft computing frame work – comparisons- evolutionary algorithm/Genetic Algorithm: basic structure – Neuro fuzzy controller – Applications – case study.

Reference

1.      C.T  lin  & C S George Lee, Neural  Fuzzy  Systems, Prentice Hall of India, 1996

2.      Lawrence Fausset, Fundamentals  of  Neural  Networks,  Prentice Hall

3.      Timmoty  J. Rose, Fuzzy  Logics  &  Applications, Willey  publications, 2010

4.      Bart  Kosko. Fuzzy  Engineering, Prentice Hall.

5.      A.R.Alive, Soft  Computing  &  its  applications

6.      Fakhreddine O, Karray Clarence W De Silva, Soft Computing and Intelligent Systems Design: Theory, Tools and Applications, Pearson India

7.      Christina Ray, Artificial  neural  networks, Tata Mc.Graw Hill, 1997

8.      J.S.R.Jang, C.T. Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, Prentice hall of India, 2004,

EC010  606L06–  TELEVISION  AND  RADAR  ENGINEERING

Teaching  Scheme:

3  hours  lecture  and  1  hour  tutorial.                                                                          Credit  4

Objective






To    familiarise    the    students    with    the    fundamentals    of    TV    Engineering    and    its
applications











T
o    familiarise
the
students    with    the    fundamentals    of
Radar
Engineering
and
its
applications

Module 1  (12  hrs)

Principles of television - image continuity - interlaced scanning - blanking - synchronizing – composite video signal - video and sound signal modulation - channel bandwidth - vestigial sideband transmission – television signal propagation

Television receiver circuits – IF section, video detector-video amplifiers-AGC,Sync processing and AFC-Horizontal and vertical deflection circuits –sound section-tuner .

Module 2  (12  hrs)

Colour TV - Colour perception - luminance, hue and saturation - colour TV camera and picture tube(working principle only) - colour signal transmission - bandwidth - modulation - formation of chrominance signal - principles of NTSC, PAL and SECAM coder and decoder.

Module 3(12  hrs)

Digital TV - composite digital standards - 4 f sc NTSC standard - general specifications - sampling structure - digital transmission, Flat panel display TV receivers-LCD and Plasma screen receivers-3DTV-EDTV.

Cable TV - cable frequencies - co-axial cable for CATV - cable distribution system - cable decoders - wave traps and scrambling methods, Satellite TV technology-Geo Stationary Satellites-Satellite Electronics

Module 4(12hrs)

Introduction- Radar Equation- Block diagram- Radar frequencies- Applications- Prediction of range performance –Pulse Repetition Frequency and Range ambiguities –Antenna parameters- System losses.

CW Radar-The Doppler Effect- FM-CW radar- Multiple frequency radar – MTI Radar-Principle- Delay line cancellors- Noncoherent MTI-Pulse Doppler Radar- Tacking Radar – Sequential lobing-Conical Scan- Monopulse – Acquisition- Comparison of Trackers.

Module 5(12  hrs)


Radar Transmitters- Modulators-Solid state transmitters, Radar Antennas- Parabolic-Scanning feed-Lens- Radomes, Electronically steered phased array antenna-Applications, Receivers-Displays-Duplexers.

Special purpose radars-Synthetic aperture radar- HF and over the horizon radar- Air surveillance radar- Height finder and 3D radars – Bistatic radar-Radar Beacons- Radar Jamming and Electronic Counters .


References:-

1.     Gulati  R.R., Modern  Television  Engineering, Wiley Eastern Ltd.
2.     Dhake  A.M., Television  Engineering, Tata  McGraw Hill, 2001 .
3.     R.P.Bali, “Color  Television,  Theory  and  Practice”,  Tata  McGraw-Hill, 1994

4.     R.G Gupta.,    Television  Engineering  and  Video  System”,  Tata McGraw-Hill, 2005

5.     Bernard Grob & Charles E. Herndon, “Basic Television and Video Systems”, McGraw Hill International
6.     Damacher  P., “Digital  Broadcasting”,  IEE Telecommunications  Series
7.
Merrill  I. Skolnik, “Introduction  to  Radar  Systems”– 3rd  Edition, McGraw Hill, 2001.

rd
8.
Merril  I.Skolnik , “Radar  Handbook”-,  3    Edition, McGraw Hill  Publishers,2008.
9.
J.  C.  Toomay,  Paul  Hannen,  “Radar  Principles  for  the  Non-Specialist”,  Printice  hall

of India,2004

EC010  607  MICROPROCESSOR  &  MICROCONTROLLER  LAB

Teaching  scheme                                                                                                Credits:  2

3  hours  practical  per  week.

Objectives:-

          To  provide  experience  on  programming  and    testing  of  few  electronic  circuits  using  8086

   . To provide experience on programming and testing of few electronic circuits using 8051simulator.

         To  understand  basic  interfacing  concepts  between  trainer  kit  and  personal  computers.


A.  Programming  experiments  using  8086  (MASM)

1.  Sum  of  N  Numbers.

2.  Display  message  on  screen  using  code  and  data  segment.

3.  Sorting,  factorial  of  a  number

4.  Addition  /Subtraction  of  32  bit  numbers.

5.  Concatenation  of  two  strings.

6.  Square,  Square  root,  &  Fibonacci  series.

B.  Programming  experiments  using  8051  simulator  (KEIL).

1.  Addition  and  subtraction.

2.  Multiplication  and  division.

3.  Sorting,  Factorial  of  a  number.

4.  Multiplication  by  shift  and  add  method.

5.  Matrix  addition.

6.  Square,  Square  root,  &  Fibonacci  series.


C. Interface experiments using Trainer kit / Direct down loading the programs from Personal computer.

1.  ADC  /  DAC  interface.

2.  Stepper  motor  interface.

3.  Display  (LED,  Seven  segments,  LCD)  interface.

4.  Frequency  measurement.

5.  Wave  form  generation.

6.  Relay  interface.





EC 010 608 MINI PROJECT LAB

Teaching  Scheme

3  hours  practical  per  week.                                                                       2  credits


The mini project will involve the design, construction, and debugging of an electronic system approved by the department. There will be several projects such as intercom, SMPS, burglar alarm, UPS, inverter, voting machine etc. The schematic and PCB design should be done using any of the standard schematic capture & PCB design software. Each student may choose to buy, for his convenience, his own components and accessories. Each student must keep a project notebook. The notebooks will be checked periodically throughout the semester, as part of the project grade.

In  addition  to  this,  the  following  laboratory  experiments  should  also  be  done  in  the  lab.



1.      555  applications

2.      Light  activated  alarm  circuit

3.      Speed  control  of  electric  fan  using  TRIAC

4.      Illumination  control  circuits

5.      Touch  control  circuits

6.      Sound  operated  circuits

7.      Relay  driver  circuit  using  driver  IC

8.      Interfacing  using  Opto  coupler

9.      Schematic  capture  software  (OrCAD  or  similar)  familiarization.

10.  PCB  design  software  (OrCAD  Layout  or  similar)  familiarization.

A   demonstration and oral examination on the mini project also should be done at the end of the semester. The university examination will consist of two parts. One of the lab experiments will be given for examination to be completed within 60 to 90 minutes with a maximum of 30% marks. 70% marks will be allotted for the demonstration and viva voce on the mini project.
Read more

LinkWithin

Related Posts Plugin for WordPress, Blogger...